“这道题的答案是n(2n+1)?”
张磊瞪大着眼睛,沿着陆舟的推导算下去,好像的确没错……
从出题道陆舟走上去,这才多久啊!
不由得内心里萌生出一种挫败感,太打击人了吧!
史蒂芬教授倒是对陆舟这个表现不感到意外,毕竟是陈可是将其天赋与陶哲轩一比的人。
“答案的确是n(2n+1)。”
见陆舟准备要回到位置上去,史蒂芬教授喊了一声。
“陆,我这里还有一道题目,不知道你敢不感兴趣。”
听到有题目,陆舟眼前一亮,转过身问:“什么题目?”
“我听陈说你在丢番图方程上有些研究?”史蒂芬笑了笑,说话的同时走上讲台,拿起粉笔。
“那我就给你出一道‘简单’的丢番图方程。”
陆舟就在讲台前一米处,眼神不移地望着黑板。
如何计算x3+y3+z333的一组整数解?
陆舟脸色却逐渐变得凝重。
有许多数学题看起来挺简单的,但问题通常都有非常复杂的解。
比如史蒂芬教授出的这道题目就是这般。
除了陆舟其他七名光华大学的学生都是一脸懵逼,也就只有郑天宇看着题目感到似乎在哪里看到过,可一时想不起来了。
张磊挠着头发,一脸的呆滞。
“这特么真的有答案???”
简直是无力吐槽了,张磊只感觉头皮发麻。
再看看小伙伴郑天宇,同样很茫然得样子。
其他没有名字的就更不用说了。
将所有人脸部变化都纳入眼球的史蒂芬教授脸色平静,他好奇地望着陆舟。
他想知道,这道题陆舟能够做得出来吗?
陆舟眉头紧锁,这道题的棘手出乎他的意料。
而且他也认出了史蒂芬教授出的这道题目。
这要往前溯源到x3+y3+z33这个方程式。
很多人肯定会想到1、1、1这个整数解,实际上还有第2组整数解,是4、4、5。
但,会不会有第三组整数解呢?
1953年,数学家louis ordell便提出这样的一个疑问。
有意思的是,这个看似没技术含量的问题,困扰了数学界很久,直到今日都没有解决。
再到1992年,又一个数学家ror heathn在研究弱近似原则失效形式x3+y3+z3k3的零点密度问题时,提出了一个猜想:对于任意一个正数k?±4(od9),丢番图方程kx3+y3+z3有无穷多组整数解(x,y,z)。
如果没学过初等数论的话,就把k?±4(od9)看做k≠9n+4,也就是k≠9n+4或k≠9n+5
每个k都有无穷多组整数解。
当前数学界在对于k小于100的情况下,除了k3的第三组整数解以外,只有k33、42没有找到整数解。
一个困扰数学界还没解决的问题,被史蒂芬教授拿出来做考题。
陆舟真的想问问对方:教授,那您知道答案吗?
他没有说,反倒精神格外振奋。
一道难倒全球数学界几十年的难题。
要是……被他解决了,岂不是很酷?
陆舟专心致志看着题目,大脑开始疯狂运转。
先要明白为什么数学家heathd9)的条件。
已知任何一个整数都可以写作如下三种形式中的一种,3k,3k1,3k+1,再分别计算它们的立方:
(3k)327k3
(3k1)327k327k2+9k1
(3k+1)327k